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Abstract. A methodological trajectory has been described dealing with the ‘nov-
elty’ or ‘surprise’ issue in time series records arising from real world complex
systems. It is based on extracting regularity (or scaling) characteristics of non-
differentiable time series with the wavelet transform, on modelling the complex
system using multi-fractal properties and on investigating novelty in the context of
the possible non-stationarity of such a model.

1 Introduction: Novelty in Complex Systems

This paper has been motivated by the recent trend in automated data anal-
ysis suggesting techniques for novelty detection and knowledge discovery [1-
3]. Such techniques are often applied to real life data known to be subject
to complex dynamics inaccessible for modelling by deterministic dynamical
systems. The local reconstruction of the phase space trajectories (or other de-
terministic characteristics) of such systems may not be possible or may pose
substantial difficulty. These difficulties may be linked to critical behaviour
characterising such systems and may be misguiding the capturing of the evo-
lution of time series arising from such systems. This in turn may result in
false novelty or surprise knowledge assessment.

Let us take an example. In the top panel of figure 1 we present a record
of heartbeat from a healthy patient. To the untrained eye, this record is
either plain noise or it is full of most interesting features, spikes etc. ! Some
degree of knowledge, suggesting that stable, cyclic, regular heartbeat rate
should become a straight line in this plot, would prompt novelty discoveries
at almost every single point. Indeed, the heartbeat rate shown is full of such
‘surprises’, each subsequent record seems to depart from the previous one
in a most wild fashion. The methods of novelty (or discovery or surprise)
detection suggested to date would also most likely detect surprises in every
single point of the record.

Let us take an imaginary record of heartbeat with a few short beats fol-
lowed by a long one. The novelty of detection of a long pause between beats of

! This duality of ‘novelty’ interpretation can be appreciated in a record as ‘sim-
ple’ as a white noise time series. On the one hand, it contains no correlations
at all, no coherent structures and thus no novelty. On the other, it represents
perfectly coded information - each and every new sample carries new surprising
information, independent and orthogonal.
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Fig. 1. Top: A healthy heart rate recording, about five hours long. Centre: A frac-
tionally differentiated S&P500 record F(-0.5) about four years long centred at the
'87 crash. Bottom: a fetal heartbeat record during labour, about ten hours long.

the heart after one or a series of shorter beats is, however, very questionable,
if one realises that this is the most likely behaviour of the healthy heartbeat.
Indeed, it has been established in the study of complex systems that heart-
beat records show anti-persistence characterised by a high probability of long
intervals after short intervals and vice versa. In fact, healthy heartbeat is at
the ultimum of the range of anti-persistence measured by the Hurst exponent
of anti-persistence - it reaches levels near H = 0.0 (on the scale 0-1) [4-6].
By comparison, Brownian walk, in which every next jump is independent of
the previous one, is characterised by H = 0.5, central on the range of H.

Such seemingly ‘anomalous’ behaviour of the healthy heartbeat is not
unique in nature. In fact many complex systems show characteristics which
make it impossible to use low degree oscillatory models for modelling them.
Such models would, of course, be relatively easy to use for discovery and
fitting, including determination of instances when they do not perform. The
essence of highly developed criticality of systems like heartbeat is that making
and fitting models of such a smooth oscillatory character does not seem to
make sense - they would fail at every instance and point.

The degree of difficulty of novelty detection in real life complex systems
can be further appreciated in the following example, shown in the second
(middle) panel of figure 1. The record of S&P index shows the crash of '87
centrally. It perhaps appears as an ‘outlier’ or novel feature to the observer.
In fact it is probably neither of these. The (multi)-fractal structure [7-9] of
the financial time series guarantees that there are crashes at any scale of
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observation. Smaller crashes will happen at smaller scales; their magnitude
follows a law which is the subject of discussion and study. Large events like
the 87 crash are ‘rare’ and may appear as outliers [10,11]. They are, however,
possibly just the effect of the internal complex dynamics of the system - they
are determined by the history of the system to the date of the crash. [12,13]

The last example again shows heart rate, but this time it is the heart
rate of a baby being born. Fetal heartbeat is different in characteristics from
adult heartbeat. Here, additionally, the record shows the dynamic evolution
of the fetal heartbeat during the final hours of labour, ending in birth. This
time it was a successful birth with positive fetal outcome. The baby born
was healthy. Its heartbeat was used to make decisions about its status during
labour. Such decisions are routinely taken upon observation of heartbeat, as
it is the only indicator of the well-being of the fetus. The obstretician observes
the heartbeat and judges it for development of characteristics which would
prompt (or better not) intervention in the case of hypoxia (lack of oxygen).
The case shown did not require intervention - the heartbeat, albeit extremely
complex, did not deviate from normal.

Developed around the examples given above, the structure of this paper
is as follows. First a method of analysis of regularity properties of time series
(wavelet transform) is introduced in section 2. It is followed, in section 3,
by its use for the characterisation of the so-called multi-fractal properties
of the time series, originating from real life complex systems. Analysis of
the possible non-stationarity of the multi-fractal properties is suggested in
section 4, together with accommodating it in a heuristic model (section 5).
For notes on model discovery from non-stationarity by the use of automated
Bayesian net reasoning, the reader is referred to [14].

2 Estimating Regularity of Rough Time Series

Suppose we can locally approximate the time series (function f) with some
polynomial P,, but the approximation fails for P,;1. One can think of this
kind of approximation as the Taylor series decomposition:?2

f(@)gy =cotcr(x—20)+ ...+ cn(z —z0)" +C|$—$0|h($°) =
= P,(x — x0) + Clx — z0|=) .

It is traditionally considered to be important in data mining of time se-
ries to capture trend behaviour P,. It is, however, widely recognised in other
fields, as discussed in the previous section, that it is not necessarily the reg-
ular polynomial background but quite often the transient singular behaviour

2 In fact the arguments to be given are true even if such a Taylor series decompo-
sition does not exist, but it can serve as an illustration [15].
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which can carry important information about the phenomena and the under-
lying system ‘producing’ the time series.

The exponent h(xg) characterises such local singular behaviour by captur-
ing what ‘remains’ after approximating with P, and what does not yet ‘fit’
into an approximation with P,;1. Thus, our function or time series f(z) is
locally described by the polynomial component P, and the so-called Holder
exponent h(zo).

|£(@) = Pu(z — @0)| < Cla — zo|"™). (1)
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Fig. 2. Left: the input time series with the WT maxima above it in the same
figure. The strongest maxima correspond to the crash of '87. The input time series
is de-biased and L1 normalised. Right: we show the same crash related maxima

highlighted in the projection showing the logarithmic scaling of all the maxima.

The advent of multi-scale techniques (like WT'), capable of locally assess-
ing the singular behaviour, greatly contributed to the advance of analysis
of ‘strange’ signals, including (multi)fractal functions and distributions. The
wavelet transform is a convolution product of the signal with the scaled and
translated kernel - the wavelet ¢ (z). [16,17] The scaling and translation ac-
tions are performed by two parameters; the scale parameter s ‘adapts’ the
width of the wavelet kernel to the resolution required and the location of the
analysing wavelet is determined by the parameter b:

z—0>b

Wieh) = [ do @) w(E0) @)

s
where s,b € R and s > 0 for the continuous version.

For analysis purposes, one is not so much concerned with numerical or
transmission efficiency or representation compactness, but rather with ac-
curacy and adaptive properties of the analysing tool. Therefore, in analysis
tasks, continuous wavelet decomposition is mostly used. The space of scale



Taming Surprises 5

s and position b, is then sampled semi-continuously, using the finest data
resolution available. 3

The only admissibility requirement for the wavelet ¢ is that it has zero
mean - it is a wave function, hence the name wavelet. However, in practice,
wavelets are often constructed with orthogonality to a polynomial of some
degree n.

oo
/ 5" (z) dz =0 3)
—0oQ

Indeed, if the number of the vanishing moments of the wavelet is at least as
high as the degree of P,, the wavelet coefficients will capture the local scaling
behaviour of the time series as described by h(zo). Thus, what wavelets pro-
vide in a unique way is the possibility to tame and manage singularities and
trends in a local fashion, through localised wavelets components [15-17,21].

W f(s, )
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Therefore, we have the following power law proportionality for the wavelet
transform (WT) of the (Holder) singularity of f(zo):

W™ f(s,20) ~ |s|M=0) .

From the functional form of the equation, one can attempt to extract the
value of the local Holder exponent from the scaling of the wavelet transform
coefficients in the vicinity of the singular point z¢. A common approach to
trace such singularities and to reveal the scaling of the corresponding wavelet
coefficients is to follow the so-called maxima lines of the WT, converging to-
wards the analysed singularity. This approach was first suggested by Mallat
et al [21] (it resembled edge detection in image processing) and was later used
and further developed among others in Refs [15,22,23]. However, any line con-
vergent to the singularity can be used (to estimate the singularity exponent).
Moreover, estimating local regularity at any point is possible by following
the evolution (decay/increase) of the wavelet transform. This includes the
smooth polynomial-like components of the time series. *

3 The numerical cost of evaluating the continuous wavelet decomposition is not
as high as it may seem. Algorithms have been proposed which (per scale) have
complexity of the order n, the number of input samples, at a relatively low
constant cost factor. [18]. Additionally, computationally cheap, discretised, semi-
continuous versions of the decomposition are possible [19,20].

4 Note that the interestingness of the time series is relative to application. The
maxima of the WT can often be very well used since they converge to singular
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In figure 2, we plot the input time series which is a part of the S&P
index containing the crash of ’87. In the same figure, we plot corresponding
maxima, derived from the WT decomposition with the Mexican hat wavelet.
The maxima corresponding to the crash stand out both in the top view (they
are the longest ones) and in the side log-log projection of all maxima (they
have a value and slope different from the remaining bulk of maxima). The only
maxima higher in value are the end of the sample finite size effect maxima.
These observations suggest that the crash of '87 can be viewed as an isolated
singularity in the analysed record of the S&P index for practically the entire
wavelet range used.

The size, as reflected in maxima scale span, and the strength h of the crash
related singularity, may suggest ‘novelty’ and ‘surprise’ to be associated with
the event. For the strongest crashes observed, obviously due to their economic
impact, there is a great interest and an ongoing debate as to whether they
can be classified as outliers or whether they actually belong to the dynamics
of the economic system [10-13]. In the case of the crash of ’87, there are
indications that it resulted from the past history of the development of the
index [12], in particular as it lacked any evident external reason for occurring.

3 Multifractal Description of Complex Systems

The time series, the examples of which have been given in the previous
sections belong to a class of systems recently characterised as multifractal
(MF) [24-26,7-9]. Several models of multifractality have been suggested,
starting at the early extensions of fractality and classical examples [27], to
sophisticated wavelet cascade based models recently suggested [28,29]. Let us
briefly hint at the main characteristic of multifractals.

For the stationary fractional Brownian noise, we would expect that any
local estimate of the Holder exponent h would conform to the mean or global
Hurst exponent H. Of course, for finite length samples and single realisations,
we will have fluctuations in the local h exponent, but they should prove to
be marginal and diminish with increasing statistics. This will not be the case
with a multifractal. The local h will show a wide range of exponents regardless
of the resolution and sample size [26,30]. What we would expect to remain
unchanged (or stationary) for the multifractal (cascade) is the multifractal
spectrum of h, i.e. D(h).

In figure 3, an example time series with the local Hurst exponent indicated
in colour are shown. We have chosen the record of healthy (adult) heartbeat
intervals and white noise for comparison. The background colour indicates

structures which they help in detecting and estimating. However, if one is inter-
ested in smooth components, this may not necessarily be the best alternative.
Similarly, for localisation of oscillatory components, phase detection using com-
plex wavelets may prove a more appropriate alternative than the maxima of the
real valued WT.
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the Hoélder exponent h - the local counterpart to the Hurst exponent H.
It is centred at the mean value corresponding with the Hurst exponent at
green. The colour goes towards blue for higher h and towards red for lower
h. In the same figure 3, we show corresponding log-histograms of the local
Hélder exponent ®. Each h measures a so-called singularity strength, and
thus a histogram provides a way to evaluate the ‘singularity spectrum’. In
other words, the local A measures the local contribution to the multifractal
spectra [30].
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Fig. 3. Left: example time series with local Hurst exponent 1nd1cated in colour.
the record of healthy heartbeat intervals and white noise. The background colour
indicates the Holder exponent locally, centred at the Hurst exponent at green; the
colour goes towards blue for higher h and towards red for lower h. Right: the
corresponding log-histograms of the local Holder exponent.

4 ‘Novelty Hints’ from the ‘Failure’ of the MF Model

A true multifractal process would share the same parameters (like MF spec-
trum) for any sub-part of the record. Thus, for an ideal multifractal system,
each new data recorded would not affect the spectrum already estimated.
Testing for this stationarity property can be done for our example records.
In particular, new sample information can be simulated by running a simple

® They are made by taking the logarithm of the measure in each histogram bin. This
conserves the monotonicity of the original histogram, but allows us to compare
the log-histograms with the spectrum of singularities D(h). By following the
evolution of the log-histograms along scale, one can extract the spectrum of the
singularities D(h) (multifractal spectrum).



8 Zbigniew R. Struzik

moving average (MA) filter, which may capture collective behaviour of the
local h characteristic. A n-MA filtering of n base is defined as follows:

3 hi(7(@) ()

i=1

where h;(f) are the subsequent values of the effective Holder exponent of the
time series f. Standard deviation from the hjs4, (i) mean exponent can also
be calculated and is closely linked to the instantaneous MF spectrum width:

haa, (i) =
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Fig. 4. The variability plot from a long run of experiments where the test persons
were given placebo or beta-blocker. Two runs of M A filter were performed with
100 and 1000 maxima long window. An interesting pattern of response to food is
evident.

An interesting pattern of ‘surprising’ features can be identified in the
example (7 days long) record of the heartbeat. Upon verification, it confirms a
pattern of response to activity, suggesting novel links to external information.
Without going into much detail of the record given, there is a particularly
strong response of the person in question to food. The observed shift towards
higher values as the result of eating (it is almost possible to estimate the
volume of the meal!) may indicate some nearly pathologic response in this
individual case [31].
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Fig. 5. Left: a fractionally F0.5 integrated ‘normal’ record contains no diagnostic
surprises. Right: the cumulative indicator hcum extracted from a bad fetal outcome
record plunges after a period of homeostasis, suggesting diagnostic ‘novelty’. Both
the cumulative Holder exponent hcym (V5) (red line) and the deviation of the Holder
from the reference value h,cs = 0.05 (blue filled curve) are plotted in the right plot.

In the case of fetal heartbeat during labour, there is no reason why the
local Holder exponent h(V;) of the variability V; component of fetal heartbeat
intervals should be stationary. It reflects dynamic changes in the condition
of the fetus and the degree of stress to which it is subjected. Despite the fact
that stress has a rapid effect on heartbeat, the effects on the state of the fetus
are not always immediate. This is why short dynamic changes in heartbeat
characteristics (which determine the multifractal picture) may not be rele-
vant and not representative of the state of the fetus. Rather than expanding
the observation window, we have suggested [32] using a cumulative indica-
tor, designed to capture the non-stationarity of the local h of the variability
component of fetal heartbeat V; [32]. ¢ The cumulative h is defined from the
beginning of the observation and with respect to some normal reference level
href:

i
hcum(vi) = - Z(heff(vl) - href) . (6)

=1
The minus sign is introduced to give the h¢y, indicator increasing di-
rection when the level of local correlations is lower than h,.¢. This corre-
sponds with a healthy condition. The case of higher correlations is associ-
ated with problems and, therefore, the accumulation of a positive difference

6 To use the linear integral of the non-stationarity component of the variability
of fetal heartbeat is simply a heuristic. Of course, other functional dependence
than linear integral is possible. The discovery of a more suitable model of such
possible functional dependence is the subject of our future research.
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(hesr(Vi) — hyey) will lead to decreasing cumulative h. The cumulative in-
dicator steadily increasing or remaining within some margin of fluctuations
indicates no problems and a good prediction. When the indicator plunges
down, it calls for intervention. This can, of course, happen at any moment
during labour. The nature of this process is dramatically non-stationary, and
a period of positive evaluation can be interrupted at any stage (for example
by the occlusion of the umbilical cord due to movement). One of the exam-
ples given (figure 5 right) shows the cumulative indicator plunging after a
prolonged homeostasis.

This record thus shows a ‘novelty’ or ‘surprise’ in the dynamic evolution
of its multifractal properties as judged by the results of the related (bad)
fetal outcome. For comparison, we show in the same figure 5 in the left panel
a record of the raw, fractionally integrated fetal heartbeat time series which
corresponds to a good fetal outcome. This time there is no diagnostic novelty
or surprise in the time series - the corresponding fetal outcome has been pro-
nounced OK. The apparent similarity of the record evolution would, however,
likely prompt a different opinion, that in both cases a novelty occurred! The
difference is that the panel on the right (in Fig. 5) has been drawn from a
diagnostic carrying information derived from the time series using a heuristic
model. The panel on the left has been prepared using the raw time series
transformed linearly by (fractional F0.5) integration.

6 Conclusions

We have elaborated on the difficulties which may arise in the (novelty ori-
ented) analysis of time series arising from real life complex systems. We have
also presented a number of example approaches aiming at 1) tempering the
singular behaviour by means of wavelet transforming, and 2) capturing com-
plex multifractal model characteristics. Additionally, we have suggested eval-
uating novelty by monitoring the instances of failure of such a model, as
is pronounced in non-stationarities of its characteristics. Such novelty can
be linked to external variables, can be further incorporated in a heuristic
model or investigated by probabilistic methods (Bayesian net) for evidence
of a higher dimensional model. The methodology, however strongly it op-
poses attempting to model time series by the reconstruction of the dynamic
properties of the system (e.g. phase space reconstruction, feature (based) lin-
guistic), does not preclude it. In fact some aspects of tempering (taming)
the singular time series involved and reasoning using multifractal (or other
appropriate stochastic model) characteristics may prove to be practical in
such an alternative approach.

As an additional concluding observation, it is possibly the lack of mul-
tiresolution capabilities which limits the possibilities of the techniques for
novelty discovery [1-3]. They operate with one fixed resolution which makes
it difficult to derive scaling laws. The wavelet transform makes multiresolu-
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tion analysis possible and, in the context of novelty discovery, it has been
shown to make possible the derivation of ‘rules and laws from data’ [33-35].
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